3.884 \(\int \frac{x^4}{(a+b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=289 \[ \frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{x \left (-4 a c+7 b^2+12 b c x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

(x*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (x*(7*b^2 - 4*a*c + 12*b*c*x^2))/(8*(b^2 - 4*a*c)^
2*(a + b*x^2 + c*x^4)) + (3*Sqrt[c]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
- Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (3*Sqrt[c]*(3*b^2 + 4*a*c
 + 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5
/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.705426, antiderivative size = 289, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1120, 1178, 1166, 205} \[ \frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{x \left (-4 a c+7 b^2+12 b c x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a + b*x^2 + c*x^4)^3,x]

[Out]

(x*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (x*(7*b^2 - 4*a*c + 12*b*c*x^2))/(8*(b^2 - 4*a*c)^
2*(a + b*x^2 + c*x^4)) + (3*Sqrt[c]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
- Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (3*Sqrt[c]*(3*b^2 + 4*a*c
 + 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*(b^2 - 4*a*c)^(5
/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1120

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(d^3*(d*x)^(m - 3)*(2*a +
 b*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int[(
d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^4}{\left (a+b x^2+c x^4\right )^3} \, dx &=\frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{\int \frac{2 a-5 b x^2}{\left (a+b x^2+c x^4\right )^2} \, dx}{4 \left (b^2-4 a c\right )}\\ &=\frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{x \left (7 b^2-4 a c+12 b c x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{\int \frac{3 a \left (b^2+4 a c\right )-12 a b c x^2}{a+b x^2+c x^4} \, dx}{8 a \left (b^2-4 a c\right )^2}\\ &=\frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{x \left (7 b^2-4 a c+12 b c x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{\left (3 c \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{8 \left (b^2-4 a c\right )^{5/2}}-\frac{\left (3 c \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{8 \left (b^2-4 a c\right )^{5/2}}\\ &=\frac{x \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{x \left (7 b^2-4 a c+12 b c x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{c} \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{c} \left (3 b^2+4 a c+2 b \sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} \left (b^2-4 a c\right )^{5/2} \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.717406, size = 285, normalized size = 0.99 \[ \frac{1}{8} \left (\frac{2 \left (2 a x+b x^3\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{4 a c x-7 b^2 x-12 b c x^3}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \sqrt{2} \sqrt{c} \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{3 \sqrt{2} \sqrt{c} \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a + b*x^2 + c*x^4)^3,x]

[Out]

((2*(2*a*x + b*x^3))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (-7*b^2*x + 4*a*c*x - 12*b*c*x^3)/((b^2 - 4*a*c)^
2*(a + b*x^2 + c*x^4)) + (3*Sqrt[2]*Sqrt[c]*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (3*Sqrt[2]*Sqrt[c]*(3*b^2 +
 4*a*c + 2*b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*
Sqrt[b + Sqrt[b^2 - 4*a*c]]))/8

________________________________________________________________________________________

Maple [B]  time = 0.2, size = 617, normalized size = 2.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(c*x^4+b*x^2+a)^3,x)

[Out]

(-3/2*b*c^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7+1/8*c*(4*a*c-19*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5-1/8*b*(16*a*c+5
*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3-3/8*a*(4*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x)/(c*x^4+b*x^2+a)^2+3/4/(16
*a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2
))*c)^(1/2))*b-3/2/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a-9/8/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*
2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2-3/4/(16*a
^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2))*b-3/2/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arcta
n(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a-9/8/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/
((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")

[Out]

-1/8*(12*b*c^2*x^7 + (19*b^2*c - 4*a*c^2)*x^5 + (5*b^3 + 16*a*b*c)*x^3 + 3*(a*b^2 + 4*a^2*c)*x)/((b^4*c^2 - 8*
a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2
+ (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2) - 3/8*integrate((4*b*c*x^2
- b^2 - 4*a*c)/(c*x^4 + b*x^2 + a), x)/(b^4 - 8*a*b^2*c + 16*a^2*c^2)

________________________________________________________________________________________

Fricas [B]  time = 2.1491, size = 6978, normalized size = 24.15 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")

[Out]

-1/16*(24*b*c^2*x^7 + 2*(19*b^2*c - 4*a*c^2)*x^5 + 2*(5*b^3 + 16*a*b*c)*x^3 + 3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*
c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 + (b^6
 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(b^5 + 40*a*b^3*c + 80*a^2*
b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)/sqrt(a^2
*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^10 - 20*a^2*
b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))*log(3*(5*b^4*c + 40*a*b^2*c^2 +
16*a^2*c^3)*x + 3/2*sqrt(1/2)*(b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4 - (a*b^13 - 8*a^2*b^11*c - 80*a
^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)/sqrt(a^2*b^10 - 20*a^3
*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))*sqrt(-(b^5 + 40*a*b^3*c + 80*a^
2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)/sqrt(a
^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^10 - 20*a^
2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))) - 3*sqrt(1/2)*((b^4*c^2 - 8*a
*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 +
 (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(b^5 + 40*a*b^3*c + 80
*a^2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)/sqr
t(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^10 - 20
*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))*log(3*(5*b^4*c + 40*a*b^2*c
^2 + 16*a^2*c^3)*x - 3/2*sqrt(1/2)*(b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4 - (a*b^13 - 8*a^2*b^11*c -
 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)/sqrt(a^2*b^10 - 2
0*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))*sqrt(-(b^5 + 40*a*b^3*c +
80*a^2*b*c^2 + (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5)/s
qrt(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^10 -
20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))) + 3*sqrt(1/2)*((b^4*c^2
- 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*
c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(b^5 + 40*a*b^3*c
 + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5
)/sqrt(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^10
 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))*log(3*(5*b^4*c + 40*a*
b^2*c^2 + 16*a^2*c^3)*x + 3/2*sqrt(1/2)*(b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4 + (a*b^13 - 8*a^2*b^1
1*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)/sqrt(a^2*b^1
0 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))*sqrt(-(b^5 + 40*a*b^3
*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c
^5)/sqrt(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a*b^
10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))) - 3*sqrt(1/2)*((b^4
*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16
*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(b^5 + 40*a*
b^3*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^
6*c^5)/sqrt(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/(a
*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))*log(3*(5*b^4*c +
40*a*b^2*c^2 + 16*a^2*c^3)*x - 3/2*sqrt(1/2)*(b^8 - 8*a*b^6*c + 128*a^3*b^2*c^3 - 256*a^4*c^4 + (a*b^13 - 8*a^
2*b^11*c - 80*a^3*b^9*c^2 + 1280*a^4*b^7*c^3 - 6400*a^5*b^5*c^4 + 14336*a^6*b^3*c^5 - 12288*a^7*b*c^6)/sqrt(a^
2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))*sqrt(-(b^5 + 40*
a*b^3*c + 80*a^2*b*c^2 - (a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*
a^6*c^5)/sqrt(a^2*b^10 - 20*a^3*b^8*c + 160*a^4*b^6*c^2 - 640*a^5*b^4*c^3 + 1280*a^6*b^2*c^4 - 1024*a^7*c^5))/
(a*b^10 - 20*a^2*b^8*c + 160*a^3*b^6*c^2 - 640*a^4*b^4*c^3 + 1280*a^5*b^2*c^4 - 1024*a^6*c^5))) + 6*(a*b^2 + 4
*a^2*c)*x)/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 -
8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)

________________________________________________________________________________________

Sympy [B]  time = 14.1283, size = 644, normalized size = 2.23 \begin{align*} - \frac{12 b c^{2} x^{7} + x^{5} \left (- 4 a c^{2} + 19 b^{2} c\right ) + x^{3} \left (16 a b c + 5 b^{3}\right ) + x \left (12 a^{2} c + 3 a b^{2}\right )}{128 a^{4} c^{2} - 64 a^{3} b^{2} c + 8 a^{2} b^{4} + x^{8} \left (128 a^{2} c^{4} - 64 a b^{2} c^{3} + 8 b^{4} c^{2}\right ) + x^{6} \left (256 a^{2} b c^{3} - 128 a b^{3} c^{2} + 16 b^{5} c\right ) + x^{4} \left (256 a^{3} c^{3} - 48 a b^{4} c + 8 b^{6}\right ) + x^{2} \left (256 a^{3} b c^{2} - 128 a^{2} b^{3} c + 16 a b^{5}\right )} + \operatorname{RootSum}{\left (t^{4} \left (68719476736 a^{11} c^{10} - 171798691840 a^{10} b^{2} c^{9} + 193273528320 a^{9} b^{4} c^{8} - 128849018880 a^{8} b^{6} c^{7} + 56371445760 a^{7} b^{8} c^{6} - 16911433728 a^{6} b^{10} c^{5} + 3523215360 a^{5} b^{12} c^{4} - 503316480 a^{4} b^{14} c^{3} + 47185920 a^{3} b^{16} c^{2} - 2621440 a^{2} b^{18} c + 65536 a b^{20}\right ) + t^{2} \left (- 188743680 a^{7} b c^{7} + 141557760 a^{6} b^{3} c^{6} - 2359296 a^{5} b^{5} c^{5} - 26542080 a^{4} b^{7} c^{4} + 9584640 a^{3} b^{9} c^{3} - 1290240 a^{2} b^{11} c^{2} + 46080 a b^{13} c + 2304 b^{15}\right ) + 20736 a^{4} c^{5} + 103680 a^{3} b^{2} c^{4} + 142560 a^{2} b^{4} c^{3} + 32400 a b^{6} c^{2} + 2025 b^{8} c, \left ( t \mapsto t \log{\left (x + \frac{50331648 t^{3} a^{7} b c^{6} - 58720256 t^{3} a^{6} b^{3} c^{5} + 26214400 t^{3} a^{5} b^{5} c^{4} - 5242880 t^{3} a^{4} b^{7} c^{3} + 327680 t^{3} a^{3} b^{9} c^{2} + 32768 t^{3} a^{2} b^{11} c - 4096 t^{3} a b^{13} + 18432 t a^{4} c^{4} - 78336 t a^{3} b^{2} c^{3} - 40320 t a^{2} b^{4} c^{2} - 3168 t a b^{6} c - 144 t b^{8}}{432 a^{2} c^{3} + 1080 a b^{2} c^{2} + 135 b^{4} c} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(c*x**4+b*x**2+a)**3,x)

[Out]

-(12*b*c**2*x**7 + x**5*(-4*a*c**2 + 19*b**2*c) + x**3*(16*a*b*c + 5*b**3) + x*(12*a**2*c + 3*a*b**2))/(128*a*
*4*c**2 - 64*a**3*b**2*c + 8*a**2*b**4 + x**8*(128*a**2*c**4 - 64*a*b**2*c**3 + 8*b**4*c**2) + x**6*(256*a**2*
b*c**3 - 128*a*b**3*c**2 + 16*b**5*c) + x**4*(256*a**3*c**3 - 48*a*b**4*c + 8*b**6) + x**2*(256*a**3*b*c**2 -
128*a**2*b**3*c + 16*a*b**5)) + RootSum(_t**4*(68719476736*a**11*c**10 - 171798691840*a**10*b**2*c**9 + 193273
528320*a**9*b**4*c**8 - 128849018880*a**8*b**6*c**7 + 56371445760*a**7*b**8*c**6 - 16911433728*a**6*b**10*c**5
 + 3523215360*a**5*b**12*c**4 - 503316480*a**4*b**14*c**3 + 47185920*a**3*b**16*c**2 - 2621440*a**2*b**18*c +
65536*a*b**20) + _t**2*(-188743680*a**7*b*c**7 + 141557760*a**6*b**3*c**6 - 2359296*a**5*b**5*c**5 - 26542080*
a**4*b**7*c**4 + 9584640*a**3*b**9*c**3 - 1290240*a**2*b**11*c**2 + 46080*a*b**13*c + 2304*b**15) + 20736*a**4
*c**5 + 103680*a**3*b**2*c**4 + 142560*a**2*b**4*c**3 + 32400*a*b**6*c**2 + 2025*b**8*c, Lambda(_t, _t*log(x +
 (50331648*_t**3*a**7*b*c**6 - 58720256*_t**3*a**6*b**3*c**5 + 26214400*_t**3*a**5*b**5*c**4 - 5242880*_t**3*a
**4*b**7*c**3 + 327680*_t**3*a**3*b**9*c**2 + 32768*_t**3*a**2*b**11*c - 4096*_t**3*a*b**13 + 18432*_t*a**4*c*
*4 - 78336*_t*a**3*b**2*c**3 - 40320*_t*a**2*b**4*c**2 - 3168*_t*a*b**6*c - 144*_t*b**8)/(432*a**2*c**3 + 1080
*a*b**2*c**2 + 135*b**4*c))))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^4+b*x^2+a)^3,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError